

Авторы

А.В. Пирогов (Andrey Pirogov) Л.С. Соколова (Lidia Sokolova)

Московский государственный университет имени М.В. Ломоносова, Химический факультет.

Представлен способ извлечения и последующего количественного определения консервантов (бензойной и сорбиновой кислот в маслах и спредах методом микроэмульсионной жидкостной хроматографии. Метод характеризуется низкими пределами обнаружения и экспреесностью.

Введение

Представлен способ извлечения и последующего количественного определения консервантов (бензойной и сорбиновой кислот в маслах и спредах методом микроэмульсионной жидкостной хроматографии. Метод характеризуется низкими пределами обнаружения и экспреесностью.

Уже более десяти лет микроэмульсии используют в качестве подвижной фазы в высокоэффективной жидкостной хроматографии. Этот режим ВЭЖХ, называемый микроэмульсионной жидкостной хроматографией (МЭЖХ), представляет растущий интерес благодаря своей уникальной селективности по сравнению с вариантом обращенно-фазовой жидкостной хроматографии и при этом характеризуется достаточно высокой эффективностью. Этот метод является очень перспективным, поскольку состав микроэмульсии, используемой в качестве подвижной фазы, можно варьировать в широких пределах и, таким образом, изменять элюирующую силу, что дает возможность одновременно в изократическом режиме определять гидрофильные и гидрофобные соединения.

Одним из наиболее перспективных направлений является возможность использования микроэмульсий в пробоподготовке. Их уникальная солюбилизирующая способность позволяет извлекать вещества различной природы из сложных матриц анализируемых объектов.

Экспериментальная часть

Оборудование

Description	Model Number
1200 Binary Pump	G1312A
1200 Degasser	G1379A
1200 Autosampler	G1379A
1200 Thermostatted Column Compartment	G1316A
1200 Diode Array Detector	G1316A

Измерение и обработка данных

Parameter	Setting
Column	Agilent Eclipse XDB-C18. 4.6x150 мм, 5мкм Part No. 993967-902
Mobile phase	Микроэмульсия: 2% додецилсульфат натрия, 0.6% н-гептан, 6% н-бутанол, рН 3
Elution	Изократическое
Flow rate	1 мл/мин
Column temperature	30 °C
Injection volume	20 мкл
Needle wash	2 сек ацетонитрилом
Wavelength	240 нм
Slit	4 нм
Data rate	80 Hz
Flow cell	Стандартная - 13 мкл

Пробоподготовка

Метод подходит для анализа сливочных масел и спредов, находящихся в продаже в розничной и оптовой сетях РФ. Навеску масла массой 0.5г помещали в пластиковую пробирку и добавляли 10 мл микроэмульсии состава 2.0% додецилсульфата натрия, 0.6% н-гептана и 6% н-бутанола (рН 3). Пробирку помещали в ультразвуковую ванну на 10 мин. После этого в пробирку типа «Эппендорф» емкостью 2 мл отбирали 1мл пробы и загружали в центрифугу. Центрифугировали 2 минуты при 16 000 об/мин. Нижний слой жидкости вводили в хроматограф.

Реактивы

Использованы следующие реактивы Додецилсульфат натрия (> 85%, Panreac, EC), н-гептан (> 99%, Panreac, EC), н-бутанол (> 99.5%, Panreac, EC), фосфорная кислота (ч.д.а., 85% водный раствор, Panreac, Испания), бензоат натрия (>99%, ZOCh, Польша), сорбат калия (> 99%, Panreac, Испания) Ацетонитрил, квалификации чистоты «gradient grade» был получен из Biosolve Chemie, Нидерланды. Деионизованная вода получена с помощью Milli-Q Integral system, Миллипор, США.

Подготовка элюента

В стеклянную банку емкостью 250 мл добавляли 91 мл деионизованной воды и 2.0 г додецилсульфата натрия. Растворяли при перемешивании в течение 1 минуты. Затем в банку автоматическим дозатором добавляли 0.88 мл н-гептана и 7.4 мл н-бутанола. Банку помещали в ультразвуковую ванну на 3 мин. Затем по каплям при перемещивании добавляли фосфорную кислоту до рН 3. Получали 100 мл подвижной фазы состава 2.0% додецилсульфата натрия, 0.6% н-гептана и 6% н-бутанола (рН 3).

Программное обеспечение

Agilent ChemStation A.10.02.

Результаты и их обсуждение

При использовании микроэмульсии в качестве экстрагента существенно снижаются временные затраты на пробоподготовку (Рис.1).

Сравнение пробоподготовки в двух режимах

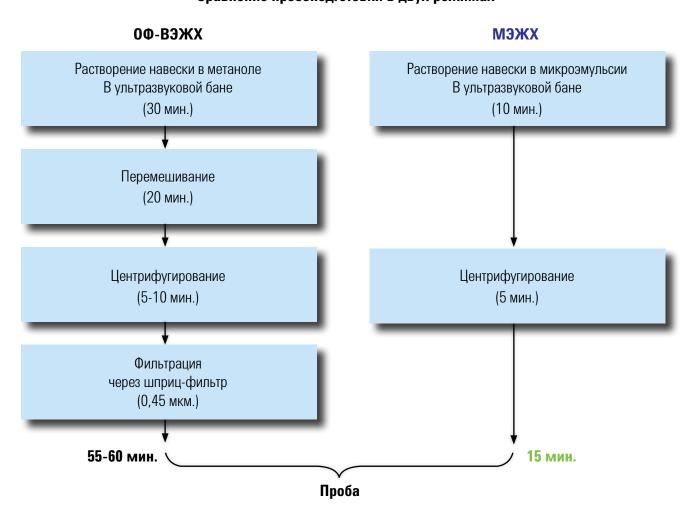


Рис.1 Оценка временных затрат на пробоподготовку в традиционном варианте (ОФ-ВЭЖХ) и при использовании микроэмульсии в качестве экстрагента (МЭЖХ).

На рис.2 приведена хроматограмма хроматограмма консервантов в спреде «Кремлевское» с использованием микроэмульсии в качестве экстрагента и подвижной фазы. Достигается экспрессное (менее 5 минут) определение целевых компонентов при полном разрещении пиков и отделении их от пиков мешающих веществ в матрице пробы.

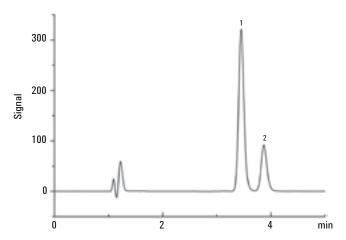


Рис. 2. Хроматограмма консервантов в спреде «Кремлевское» с использованием микроэмульсии в качестве экстрагента и подвижной фазы. Колонка: Agilent Eclipse XDB-C18. 4.6x150 мм, 5мкм. Элюент: 2% додецилсульфат натрия, 0.6% н-гептан, 6% н-бутанол, pH 3. Скорость потока элюента 1 мл/мин. Температура колонки 30 ОС. Объем вводимой пробы 20 мкл. Спектрофотометрическое детектирование при 240 нм. Пики: (1) - сорбиновая кислота, (2) - бензойная кислота.

Некоторые метрологические характеристики способа определения приведены в таблице 1.

Компонент	Предел обнаружения, г/л	r2	Линейный диапазон, мг/л
Сорбиновая кислота	0.04	0.9992	0.1-500
Бензойная кислота	0.06	0.9993	0.2-500

Таблица 1

Заключение

Разработан способ экспрессного количественного извлечения и одновременного определения сорбиновой и бензойной кислот в спредах и маслах методом микроэмульсионной жидкостной хроматографии со спектрофотометрическим детектированием. Пределы обнаружения составляют 0.04 и 0.06 мг/л соответственно. Показано, что предложенный способ позволяет сократить общее время пробоподготовки (по сравнению с существующими), как минимум, в 4 раза, с 60 до 15 минут.

Список литературы

- ГОСТ Р 52100-2003. Спреды и смеси топленые. Общие технические условия. Введ. 1 июля 2004.
- ГОСТ Р 53752-2009. Молоко и молочные продукты. Методы определения содержания консервантов и красителей методом высокоэффектиной жидкостной хроматографии. Введ. 15 декабря 2009. М.: Стандартинформ. 2010. 11с.
- G. Ping, H. Hong, X. Liang, D. Liu. Assessment of benzoic acid levels in milk in China. Food Control, Volume 20, P. 414–418, 2009.
- S.A.V. Tfouni, M.C.F. Toledo. Determination of benzoic and sorbic acids in Brazilian food Food Control, Volume 13, P. 117–123, 2002.
- F. Fuselli, Chiara Guarino, A. L. Mantiaa, L. Longo, A. Faberi,
 R. M. Marianella. Multi-detection of preservatives in cheeses
 by liquid chromatography—tandem mass spectrometry.
 J.Chromatogr. B, Volume 906, P.9-18. 2012.

Дополнительная информация: www.solutions-to-win.com

<u>Контакты: Agilent MAPs:</u>
maps agilent@agilent.com

This information is subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, May 1, 2013 5991-2427RU

