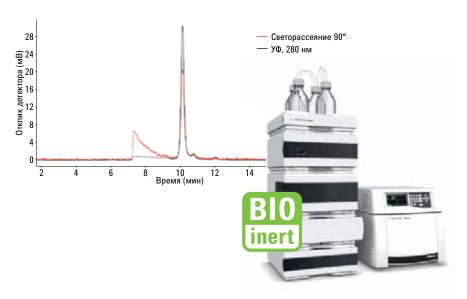


Детализированное исследование агрегации моноклональных антител с применением системы Agilent 1260 Infinity Multi-Detector Bio-SEC Solution с детектированием по светорассеянию

Методические указания


Биотерапия и биоаналоги

Автор

Соня Шнайдер (Sonja Schneider) Agilent Technologies, Inc. Вальдброн, Германия

Аннотация

Данные методические указания демонстрируют детализированный эксклюзионный анализ моноклональных антител и их агрегатов с применением системы Agilent 1260 Infinity Multi-Detector Bio-SEC Solution. С детектированием по светорассеянию под углом 90° наблюдаются явные преимущества для определения молекулярной массы и большая чувствительность к агрегатам по сравнению с УФ-детектированием. В сочетании с высокочувствительным и линейным диодно-матричным детектированием ($R^2 = 0.9999$) становится возможным детализированный анализ агрегации моноклональных антител.

Введение

Эффективность терапевтических компонентов, основанных на белках, таких как моноклональные антитела (mAb), сильно зависит от правильной первичной, вторичной, третичной и четвертичной структур. Это включает правильную последовательность аминокислот, посттрансляционные модификации, конформацию и состояние агрегации. Во время производства, хранения и перевозки белки могут подвергаться процессам агрегации. Присутствие любого типа агрегированных терапевтических белков нежелательно, так как они могут приводить к потере активности, уменьшению растворимости и увеличению иммуногенности. Во время разработки и производства таких фармацевтических биомолекул необходимо контролировать стабильность продукта. Даже низкие уровни агрегации фармацевтически применяемых белков могут приводить к негативным физиологическим эффектам. Поэтому необходимы надежные и особо чувствительные аналитические инструментальные средства для обнаружения и количественного определения следовых количеств агрегатов белков.

Эксклюзионная хроматография (SEC) широко применялась в качестве стандартного метода для определения параметров агрегатов белков, присутствующих в иммуноглобулинах. В традиционном SEC-анализе молекулярная масса (Mw) определяется с применением концентрационного-детектора, такого как УФ-детектор или рефрактометр, относительно калибровки колонки. Однако аналитическая точность ограничена вследствие взаимодействий аналитов с эксклюзионными колонками. Для белков, осаждающихся на колонке, времена удерживания могут быть увеличены и неточно рассчитаны молекулярные массы.

Для получения дополнительной информации о молекулярной массе и размере молекулы могут применяться другие методы детектирования, такие как детектирование по светорассеянию. Молекулярную массу определяют с применением статического светорассеяния (LS), в котором измеряется интенсивность рассеянного света. Кроме того, динамическое светорассеяние (DLS) дает возможность определять размер молекулы посредством измерения гидродинамического радиуса (R_H). DLS детектирует колебания интенсивности рассеянного света, происходящие вследствие Броуновского движения молекул в растворе².

Мультидетекторная система Agilent 1260 Infinity Bio-inert Multi-Detector Suite со статическим и динамическим LS-детектированием обеспечивает измерение и молекулярной массы, и гидродинамического радиуса. Сочетание биоинертного четырехканального насоса Agilent 1260 Infinity Bio-inert Quaternary LC с биоинертным диодно-матричным детектором (DAD) Agilent 1260 Infinity Bio-inert Diode Array Detector обеспечивает инертный (безметаллический) путь потока.

В данных методических указаниях определение параметров mAB показано относительно определения Mw, R_н и агрегации. Преимущество применения LS-детектирования продемонстрировано для анализа агрегатов mAb в сравнении с УФ-детектированием. Достигнуто надежное определение Mw независимо от количества введенной пробы. В сочетании с высокочувствительным диодно-матричным детектированием становится возможным детализированный анализ агрегации mAb.

Экспериментальная часть

Система Agilent 1260 Infinity Multi-Detector Bio-SEC Solution состоит из следующих модулей:

- Биоинертный четырехканальный насос Agilent 1260 Infinity Bio-inert Quaternary Pump (G5611A)
- Высокоэффективный биоинертный автосамплер Agilent 1260 Infinity High Performance Bio-inert Autosampler (G5667A)
- Термостат автосамплера Agilent 1290 Infinity (G1330B) для охлаждения проб
- Термостат колоночного отделения Agilent 1290 Infinity (G1316C) с биоинертным теплообменником для растворителей
- Диодно-матричный детектор Agilent 1260 Infinity DAD VL (G1315D) со стандартной биоинертной проточной кюветой 10 мм
- Биоинертная мультидетекторная система Agilent 1260 Infinity (G7805A) с двухугловым статическим и динамическим детектированием по светорассеянию (G7809A)

Колонка

Agilent Bio SEC-3, 300Å, 7,8 × 300 мм, 3 мкм (кат. номер 5190-2511)

Поточный фильтр перед LS-детектором (кат. номер G7808-64001) с мембранами фильтра 0,2 мкм (Supor-200 13 мм, кат. номер 60298, Pall Life Sciences, Порт-Вашингтон, штат Нью-Йорк, США).

Программное обеспечение

ПО Agilent Bio-SEC версия A.01.01 Build 4.30989

Растворители и образцы

Все используемые растворители имели класс чистоты «для ВЭЖХ». Свежая вода высшей степени чистоты была получена в системе Milli-Q, оборудованной мембранным картриджем point-of-use с размером пор 0,22 мкм (Millipak). Фосфатно-буферные солевые таблетки (PBS) и иммуноглобулин овцы IgG были приобретены в Sigma-Aldrich, Сент-Луис, штат Миссури, США. Стандарт для гель-фильтрации был приобретен в Вio-Rad Laboratories, Inc., Геркулес, штат Калифорния, США.

Используемые моноклональные антитела:

- RAT Anti-DYKDDDDK маркированное антитело
- Моноклональное антитело Anti-c-Мус (Аналог 9Е10, мышиный IqG1)

Приготовленный буфер PBS был трижды отфильтрован с применением мембранного фильтра с размером пор 0,2 мкм. Образцы были дополнительно отфильтрованы с применением шприцевого фильтра Agilent Captiva premium с мембраной из регенерированной целлюлозы 4 мм, с размером пор 0,2 мкм (кат. номер 5190-5106).

Даже малые изменения давления могут вызвать нарушения режима в колонке, которые могут привести к увеличенному шуму базовой линии сигнала LS-детектора. Для уменьшения шума насоса/колонки и, следовательно, для оптимизации соотношения «сигнал — шум» (S/N) важно учитывать следующие настройки насоса:

- Обводной многоканальный градиентный клапан (MCGV) в четырехканальном насосе. Четырехканальный насос должен быть преобразован в изократический насос непосредственным соединением входного канала растворителя от дегазатора или бутыли с растворителем к активному входному клапану насоса (применяя адаптер PEEK 1/4-28 к 10-32 (кат. номер 0100-1847).
- Исправьте расширенные параметры насоса, как отмечено на рис. 1, с особым вниманием к настройкам сжимаемости (46 × 10⁻⁶/бар для растворителей, основанных на воде). Градиент с низким максимальным потоком (для чувствительных колонок рекомендуется поток вплоть до 0,2 мл/мин²), поскольку это предохраняет колонку от повреждений вспедствие сильных ходов поршня насоса.

Результаты и обсуждение

В традиционном эксклюзионном анализе применяют калибровку колонки стандартными белками различных размеров с применением концентрационного детектора (УФ- или рефрактометра). Оба метода сравнивались для иллюстрации преимущества LS-детектирования относительно традиционного эксклюзионного анализа. На рис. 2 представлена УФ-хроматограмма стандарта гель-фильтрации от Biorad. Применяли аналиты с массами от 670 000 а.е.м. (тироглобулин) до 1350 а.е.м. (витамин B12) для создания калибровки колонки при 280 нм.

Измеряли гидродинамические радиусы в нм (правая ось) для трех самых больших белков (тироглобулин плюс агрегаты, IgG плюс агрегаты и овальбумин).

Табл. 1. Хроматографические условия

Хроматографические условия		
Подвижная фаза	PBS, pH 7,4	
Скорость потока	0,75 мл/мин	
Время анализа	25 минут	
Объем ввода пробы	В зависимости от методики, от 5 до 100 мкл	
Термостатирование автосамплера	5 °C	
Температура термостата колоночного отделения	30 °C	
Диодно-матричный детектор	280/4 нм Ref.: Откл.	
Ширина пика	> 0,05 минуты (время отклика 1,0 секунды) (5 Гц)	
LS-детектор (детектор по светорассеянию)	30°C, 5 Гц	
Операционные параметры DLS		
Время работы коррелятора	5 секунд	
Быстрота действия коррелятора	10 мкс	
R ²	0,80	
Вязкость растворителя	0,0079 П. (вязкость воды при 30°C)	
Показатель преломления	1,333 (показатель преломления воды)	

Рис. 1. Расширенные параметры насоса

растворителя

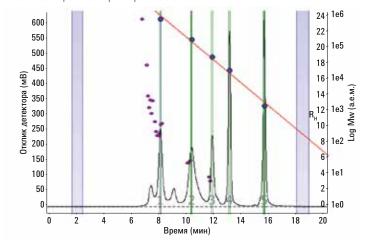


Рис. 2. Калибровка колонки для традиционного эксклюзионного анализа при 280 нм с применением стандарта для гель-фильтрации Biorad, содержащего различные белки от тиреоглобулина (670 000 а.е.м.), IgG (158 000 а.е.м.), овальбумина (44 000 а.е.м.) и миоглобина (17 000 а.е.м.) до витамина B12 с массой 1350 а.е.м.

Два различных mAB были проанализированы с применением произведенной калибровки колонки и статического LS-детектирования под углом 90°. На рис. 3 представлен анализ первого mAB, anti-DYKDDDDK (рис. 3A = сигнал DAD при 280 нм вместе с калибровкой колонки, B = сигнал LS при 90°). Полученные значения Mw были приблизительно равны 153 000 а.е.м. в обоих методах анализа. Для данного антитела результаты были абсолютно сопоставимы.

Для второго антитела ситуация была совершенно различной (anti-c-Myc). На рис. 4 представлен анализ Mw антитела anti-c-Myc с применением (A) традиционного эксклюзионного анализа с УФ-

детектированием и калибровкой колонки и (B) LS-анализа под углом 90°.

Три пика ясно видимы на обеих хроматограммах. С применением традиционного SEC-анализа первый пик имеет Mw 145 000, второй — 1000 и третий пик — 100 а.е.м. LS-анализ под углом 90° (рис. 4В) показывает Mw приблизительно 150 000 для всех трех видимых пиков. По-видимому, все три пика представляют одно и то же антитело, но его части элюируются с различными временами удерживания вследствие неспецифического взаимодействия антитела с колонкой. Этот результат был подтвержден с помощью DLS-анализа третьего пика

со средним R_H 5,23 нм (опубликованное значение³ 5,29 нм). Согласно калибровке колонки, молекулы данного размера должны элюироваться приблизительно на 10 минуте (где элюируется первый пик антитела anti-c-Myc). Антитело anti-c-Myc не элюируется должным образом, потому что оно, возможно, оседает на колонке. Другие возможные причины этого особого свойства элюирования могут заключаться в конформационных изменениях вследствие денатурации или различных процессов сворачивания (например, неглобулярного).

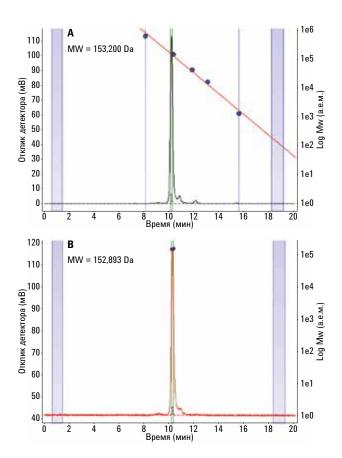


Рис. 3. Сравнение традиционного эксклюзионного анализа с УФдетектированием и калибровкой колонки (A) и LS-анализа под углом 90° (B) для anti-DYKDDDDK. Оба результата Мw находятся в одном и том же диапазоне: приблизительно 153 000 а.е.м.

Рис. 4. Сравнение традиционного SEC-анализа с калибровкой колонки (A) и LS-анализа при 90° (B) для anti-C-Myc. Результаты для второго и третьего пика абсолютно различны.

Вследствие принципа прямого измерения LS-детектора, определение Mw действительно не зависит от количества введенной пробы (рис. 5 и 6).

В табл. 2 представлены детализированные определения Mw для всех введенных количеств проб. От 1 до 120 мкг значения Mw находятся между 145 000 и 155 000 а.е.м. (отклонение — 3,33%). Полученные значения Mw отличаются в большей степени, с отклонением ~17% только для двух наименьших введенных количеств. Отношение S/N наименьшего количества равно 3 для сигнала 90°, что также представляет стандартный предел обнаружения, подобно примеру, наблюдаемому с УФ-сигналами. Поэтому точное определение Mw затруднено для таких низких концентраций. Предел точного определения Mw должен находиться в диапазоне S/N = 10 для обеспечения правильного определения Mw.

Табл. 2. Определение Mw для разных введенных количеств моноклонального антитела

Объем ввода пробы, мкл	Количество на колонку (мкг)	Mw (a. e. м.)	R _н (нм)
0,1	0,2	127 584	
0,2	0,4	124 326	
0,5	1	146 225	
1	2	146 620	
2	4	148 750	
3	6	150 282	
4	8	151 515	
5	10	152 893	
6	12	152 659	
7	14	152 318	
8	16	152 419	
9	18	152 900	
10	20	150 327	
20	40	153 795	4,59
30	60	154 719	5,44
40	80	154 961	4,75
50	100	154 988	5,22
60	120	155 727	4,95

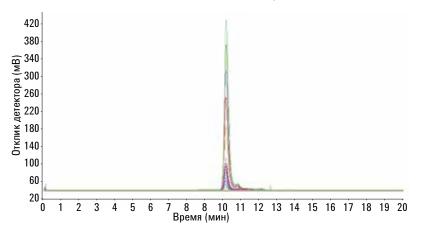


Рис. 5. Наложение 90° сигналов различных введенных количеств mAb (anti-DYKDDDDK) от 0,2 до 120 мкг на колонке

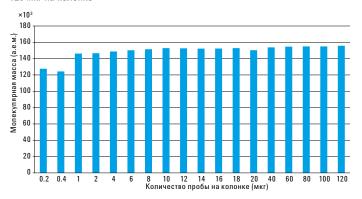


Рис. 6. Определение Мw в а.е.м. для разных количеств пробы (anti-DYKDDDDK) на колонке

Для количества 100 мкг mAb на колонке значение S/N составляло 1669 при значении шума 0,2 мкВ и сигнала 334 (рис. 7).

Для демонстрации высокой чувствительности к агрегатам антитела было получено небольшое количество агрегатов антитела anti-DYKDDDDK. Перед вводом в систему ВЭЖХ антитело нагревали до 60 °С в течение 1 часа. На рис. 8 представлен анализ нагретого антитела anti-DYKDDDDK. Значительно более высокая чувствительность к агрегатам наблюдалась в случае 90° LS-сигнала.

Линейность диодно-матричного детектора для иммуноглобулинов показана для lgG овцы в серии разбавления 1:2, от 10 мг/мл до 78 мкг/мл. В данном диапазоне была достигнута превосходная линейность с коэффициентом детерминации $R^2 = 0.9999$ (рис. 9).

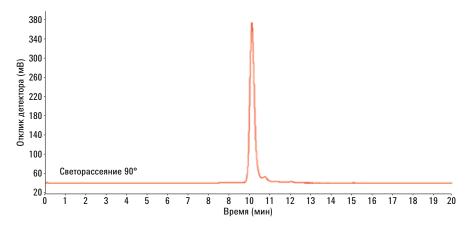


Рис. 7. 100 мкг mAb на колонке — S/N 1669 с уровнем шума 0,2 мкВ и сигнала 334 для 90° LS-сигнала

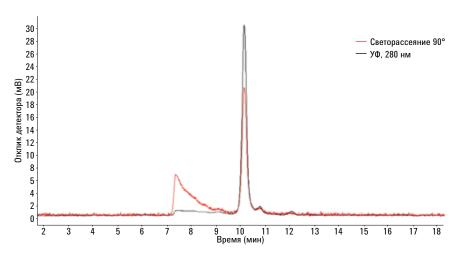


Рис. 8. Анализ arperatoв anti-DYKDDDDK c DAD при 280 нм (черный) и LS-анализпод углом 90° (красный). Чувствительность к arperataм значительно выше для LS-детектирования под углом 90°.

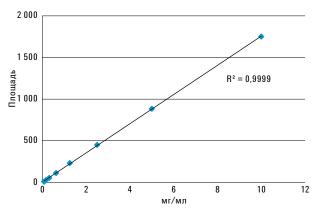


Рис. 9. Линейность DAD для lgG овцы от 10 мг/мл до 78 мкг/мл. R^2 составлял 0,9999, что означает превосходную линейность.

Выводы

Данные методические указания детально описывают два моноклональных антитела и их агрегаты с применением системы Agilent 1260 Infinity Bio-SEC Solution. Данное решение включает четырехканальный насос Agilent 1260 Infinity Bio-inert Quaternary LC с биоинертным диодно-матричным детектором Agilent 1260 Infinity Bio-inert Diode Array Detector (DAD) в сочетании с биоинертным мультидетектором Agilent 1260 Infinity Bio-inert Multi-Detector Suite с двухугловым статическим и динамическим детектированием по светорассеянию.

Сравнение традиционного эксклюзионного анализа (калибровка колонки) и прямого определения Мw с применением LS-детектирования под углом 90° демонстрирует явные преимущества применения LS-анализа. Для образцов, проявляющих неспецифические взаимодействия с эксклюзионной колонкой, определение Мw может быть комбинировано с применением традиционного эксклюзионного анализа. Применение LS-детектора с прямым принципом измерения предотвращает неточность результатов, вызванную неспецифическими взаимодействиями между пробой и колонкой.

Определение Мw абсолютно не зависит от введенного количества пробы. От 1 до 120 мкг отклонение значения Мw от 150 000 а.е.м. составляло всего лишь 3,33%. Найденное значение S/N составляло 1669 со значением шума 0,2 мкВ и сигнала 334 для количества 100 мкг mAb на колонке.

LS-детектирование под углом 90° обеспечивает значительно более высокую чувствительность к агрегатам mAb по сравнению с УФ-детектированием. В сочетании с чувствительным и линейным DAD-детектированием (R² = 0,9999) возможен детализированный анализ агрегации mAbs.

Литература

- 1. Гэбрилсон, Дж. П. (Gabrielson, J.P.) *u* др. Количественный анализ уровней агрегации в композиции рекомбинантного моноклонального антитела человека с применением эксклюзионной хроматографии, асимметричным разделением поля потока и скоростью седиментации (Quantitation of Aggregate Levels in a Recombinant Humanized Monoclonal Antibody Formulation by Size-Exclusion Chromatography, Asymmetrical Flow Field Flow Fractionation, and Sedimentation Velocity). Журнал фармацевтических наук (Journal of Pharmaceutical Sciences)>, 2007, 96 (2), 268-279.
- 2. Ноббман, Ю. (Nobbmann, U.) и др. Динамическое светорассеяние как относительный инструмент для оценки молекулярной целостности и стабильности моноклональных антител (Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies). Обзоры по биотехнологии и генной инженерии (Biotechnology and Genetic Engineering Reviews), 2007, 24:1, 117—28.
- 3. Армстронг, Дж. К. (Armstrong, J.K.) и др. Гидродинамические радиусы макромолекул и их влияние на агрегацию эритроцитов (The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation). Биофизический журнал (Biophysical Journal), 2004, 87, 4259—4270.

www.agilent.com/chem

Информация может быть изменена без предупреждения.

© Agilent Technologies, Inc., 2014 Напечатано в США 1 марта 2014 г. 5991-3954RU

